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SECTION l -- SUMMARY

Pratt & Whitney completed a comprehensive study of far-term technology require-
ments and their benefits for commercial aircraft engines beyond the year 2000.

This effort -- the Benefit/Cost Study -- was conducted under the NASA-sponsored

Energy Efficient Engine program. It showed that the benefits derived from high
technology advancements are far from exhausted, and there is a potential for

significant savings in both fuel consumption and operating costs.

In examining the merits of technology advances, a series of cycle, mechanical

and economic analyses was conducted to identify promising advanced engine con-

cepts. Analyses identified a geared-fan, separate exhaust configuration with a

bypass ratio between 9 to 12:l and overall pressure ratio between 55 to 65:1

as providing large savings. Compared to a refined version of the Energy Effi-

cient Engine, the advanced engine concept lowered fuel burned by up to 24 per-
cent and operating costs by up to 14 percent. These savings are attributed to

the following nine advanced concepts, and as part of the Benefit/Cost Study,

programs have been defined to bring each technology to a state of readiness.

Short, slim nacelles

Swept fan blades
High speed turbines with improved materials
Low Loss diffuser/combustor with improved materials

Reduction gearing with improved materials and cooling

Highly-loaded compressors
Closed-loop active clearance control

Fully-damped high speed rotors
Structural composites

The results of this study have pointed to the direction for future research.

To obtain the large potential savings offered by technology advancements, it

is imperative to develop a technology base that permits engines to operate at

significantly higher overall pressure ratios and bypass ratios.



SECTION2 -- INTRODUCTION

The Energy Efficient Engine ComponentDevelopment and Integration program is
an effort sponsored by the National Aeronautics and Space Administration. It
is directed toward identifying and verifying technology advances that can sub-
stantially lower both the fuel usage and the operating costs of future commer-
cial aircraft engines. As part of the Energy Efficient Engine program, Pratt &
Whitney completed a Benefit/Cost study of commercial aircraft engines beyond
the year 2000. This study focused on identifying far-term technology require-
ments, assessing their benefits and formulating programs to bring the technol-
ogies to a state of readiness.

The Benefit/Cost study was conducted in a series of steps. First, performance
trends were projected for the study time period. Cycle studies were then con-

ducted and flowpaths were defined for eight advanced cycles. After selecting
the three most attractive concepts, mechanical configurations of the candidate

engines were defined to identify unique technology requirements. Next, perfor-
mance and economic analyses were conducted to quantify the benefits of the

far-term technologies. Finally, an individual technology readiness program was
formulated for each concept.

Fuel burned and direct operating cost plus interest were the main evaluation

parameters used in this study. In assessing the benefits of a concept, the
change in these parameters was determined relative to a refined version of the

Energy Efficient Engine's flight propulsion system. This refined engine, which

is based on a 1988 level of technology, offers savings of over 20 percent in
fuel usage and over lO percent in operating cost compared to the Pratt &
Whitney JT9D-7A reference engine.

This report summarizes the salient results from this study. Details of the
various analyses are contained in Volume II.

2



SECTION3 -- ENGINEDEFINITION

TECHNOLOGY TRENDS

In establishlng a base for engine and cycle definitions, technology trends were

projected to ascertain the expected level of component performance in the 2000
to 2010 time frame. Overall engine efficiency, which is proportional to the in-

verse of thrust specific fuel consumption, has increased steadily over the past

30 years. This upward trend, as shown in Figure l, is projected to continue.
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Figure I Overall Efficiency Trends -- The trend for higher system efficiency

is expected to continue upward on the basis of increases in com-

ponent efficiency, overall pressure ratio and bypass ratio.

Higher levels of overall efficiency are the result of projected increases in

engine pressure ratio, component efficiency and bypass ratio. The operating
levels of engine pressure ratio and bypass ratio are expected to nearly double
over the next 25 years. However, only moderate increases in component effi-

ciency and combustor exit temperature are anticipated for commercial aircraft

engines.



CYCLEANALYSES

Key cycle parameters were studied parametrically to define candidate cycles
for an advanced propulsion system. First, a range of overall engine pressure
ratios and combustor exit temperatures was evaluated, using projected component
efficiencies and maintaining a constant fan pressure ratio. The results in
Figure 2 indicate that cycle trends favor increasing overall pressure ratio.
For a large, 266,892 N (60,000 Ib) thrust engine, the lowest fuel usage was at
pressure ratios between 60 and 65:1. No appreciable overall efficiency benefit
was shown for increasing the cruise combustor exit temperature beyond 1315°C
(2400°F).
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Figure 2 Cycle Trends -- Trends favor increasing overall pressure ratio to

levels between 60 and 65:1 for large gains in fuel efficiency.

In other analyses, the affects of varying fan pressure ratio and bypass ratio
while maintaining a constant engine pressure ratio and combustor exit tempera-

ture were examined. For a given level of component technology, a unique rela-

tionship exists between fan pressure ratio and bypass ratio for optimum pro-
pulsion system operation. Figure 3 shows that fuel usage decreases with

increasing the bypass ratio, thereby decreasing fan pressure ratio. However,
the technical challenge is keeping the engine diameter to dimensions that are

compatible with airplane integration. Even with advances in nacelle technology,
bypass ratios higher than 13:l may be limited by acceptable engine diameter.

Candidate Cycles

On the basis of these results, eight cycles were selected for flowpath defini-

tion and further analysis. These cycles ranged in bypass ratios from g to 21

and overall pressure ratios from 46 to 64. Two cycles were defined for a
Ill,200 N (25,000 Ib) thrust size, while the remainder were defined for a

266,880 N (60,000 Ib) thrust size. In addition, the spool configurations con-
sisted of a mixture of both direct drive and geared systems with either two or
three spools.
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Figure 3 Bypass Ratio Trends -- Increasing the bypass ratio reduces fuel

consumpti on.

In selecting three candidate engines, installed fuel consumption trends were

evaluated for the configurations that evolved from the flowpath analyses. These

results are presented in Figure 4 and show the advantage of a high bypass

ratio, geared system with separate exhaust flow. Based on these considerations,

the candidate geared, separate exhaust flowpaths summarized in Table I were
selected for the mechanical design studies. These include both a two and a

three spool configuration in the 266,880 N (60,000 Ib) thrust size, and a

two-spool configuration in the III,200 N (25,000 Ib) thrust size.



TABLE I

SUMMARY OF FINAL THREE FLOWPATH CANDIDATES

Reference

Engtne

CYCLE

_et Flow, kg/sec (Ib/sec)
Fan Pressure Ratio

Bypass Ratio
Overall Pressure Ratio

Combustor Exit Temp., "C ('F)

266,800 N (60,000 Ib)
Thrust Size

Two Spool Three Spool

FAN

_D Fan Pressure Ratio

Tip Diameter, cm (in)

Inlet Hub/Tip Ratio
Corrected Tip Speed,

m/sec (ft/sec)
Number of Airfoils

11,2000 N (25,000 Ib
Thrust Size

Two Spool

LOW-PRESSURE COMPRESSOR

Pressure Ratio

Number of Stages
Average Aspect Ratio
Rotor Speed, rpm
Number of Airfoils

679 (1498) 1184 (2612) 1184 (2612) 504 (1112)
1.65 1.53 1.53 1.53
7.2 12.8 12.8 12.5
38.6 64.0 64.0 55.0
1268 (2315) 1329 (2425) 1329 (2425) 1329 (2425)

INTERMEDIATE PRESSURE COMPRESSOR

1.65 1.50 1.50 1.50
215.9 (85.0) 271.2 (106.8) 274.0 (107.9) 172.2 (67.8)
0.340 0.260 0.260 0.260

441 (1450) 356 (1170) 356 (1170) 356 (1170)
36 24 24 24

1.84 2.52 2.05 2.15
4 3 3 3
2.30 1.90 1.90 1.91
3620 7245 7377 11,183
764 253 186 224

Pressure Ratio N/A N/A 4.92
Number of Stages N/A N/A 5
Average Aspect Ratio N/A N/A 1.50

Rotor Speed, rpm N/A N/A 10,856
Number of Airfoils N/A N/A 346

INTERMEDIATE CASE

Length, cm (in)

Inner Radius, cm (in)

N/A

39.6 (15.6) 37.5 (14.8) 23.62 (9.30) 18.54 (7.30)
(IPC-HPC)

24.89 (9.80) 21.08 (8.30) 8.20 (3.23) 7.62 (3.00)

HIGH-PRESSURE COMPRESSOR (Axial Only)
Pressure Ratio 14.0

Number of Stages I0
Rotor Speed, rpm 13,176
Number of Airfoils 1265

20.0 5.00 6.00
11 7 6

17,640 20,710 22,182
1014 837 537



TABLE I (continued)

Reference

Engtne

266,800 N (60,000 lb)
Thrust Size

Two Spool Three SpOol

11,2000 N (25,000 Ib)
Thrust Size

Two Spool

HIGH-PRESSURE COMPRESSOR(Centrifugal)
Pressure Ratlo N/A
Specific Speed N/A

Maximum Tip Speed,
m/sac (ft/sec) N/A

COMBUSTOR
Configuration
Length, cm (tn)
Space Heating Rate, M Btu/hr

(It J) (atmos)
Combustion Length, cu (in)

Axtal
38.1 (15.o)

5.1
2o.s (8.1)

HIGH-PRESSURE TURBINE

Expansion Ratlo
Veloctty Ratio
Number of Stages
Number of AtrfotIs
AN2 (x1010), (ln2)(rpm 2)

4.00
0.64
2
149
5.0

INTERMEDIATE PRESSURETURBINE

Expansion Ratio
Velocity Ratio
Number of Stages
Number of Atrfotls
AN2 (x1010), (tn2)(rpB 2)

N/A

N/A
N/A
N/A

N/A

TRANSITION DUCT
Length, cm (ln)
Area Ratio

23.36 (9.20)
1.22

LOW-PRESSURETURBINE
Expansion Ratio
Veloctty Ratio
Number of Stages
Number of A1rfolls
AN2 (x1010), (tn2)(rpB 2)

6.10
0.49
5
1119
1.68

N/A N/A
N/A N/A

N/A N/A

Axial Axtal
35.0 (13.8)

7.0
17.7 (7.0)

4.60
0.65
2
130
6.0

N/A
N/A
N/A
N/A
N/A

9.95 (3.92)
1.10

10.8
0.60
5
812
6.60

35.0 (13.8)

7.0
17.7 (7.0)

2.50

0.63
1
49
6.2

1.94
0.630
1
65
5.0

C1ose-
Coup1 ed

9.705
O. 564
5
752
6.85

3.35
72.5

651 (2139)

Radial Inflow
27.4 (10.8)

3.0
17.7 (7.0)

4.78
0.650
2
104
6.0

N/A
N/A

N/A
N/A
N/A

3.04 (1.20)

8.33
O. 580
4
617
6.62
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Figure 4 Fuel Consumption Results -- Geared-fan configurations are superior
in lowering fuel usage compared to direct drive systems.

MECHANICAL DEFINITION

Figure 5 shows the conceptual mechanical design of an advanced turbofan engine.

Although the engine in this figure is a two-spool system in the 266,880 N

(60,000 Ib) thrust size, the configuration and applied technologies are re-
presentative of the other two engine concepts.

The engine is characterized by very high speed, small diameter compressors and

turbines and a relatively slow speed, large diameter fan driven through gears
by the high speed low-pressure turbine. Nine major technology advances are

necessary to achieve the projected overall efficiency increase.

Swept Fan Blades -- This concept offers significant performance gains by re-

ducing shock losses, eliminating the part-span shroud and using a three-

dimensional design process. Other features include lower component weight from

the hollow titanium blades and a disk made of a composite-relnforced alloy.
The potential efficiency improvement of a swept blade, relative to the shroud-

ed design in the reference engine, could be as high as 4 percent.

Reduction Gearing with Improved Materials and Coolin_ -- Efficiency improve-
ments in the high speed low-pressure turbine and the relatively slow speed fan

are very dependent on a highly efficient gearing system. The design is based
on stiff shafting and casing to minimize deflections and deformations. The

type of gearing arrangement envisioned uses gears and bearings fabricated from

advanced materials and lubricants with greater load carrying capability. High

strength gear materials offer up to a 45 percent improvement in strength,
thereby allowing smaller gears than in service today. These advances could

provide a gear system efficiency greater than 99 percent.
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Figure 5 Conceptual Engine Definition -- The prominant mechanical design

features are a geared low-pressure spool, swept fan blade and slim

line nacelle.

Highly-Loaded Compressors -- Advances in both compressor aerodynamics and

materials are required for the highly-loaded compressor in a future engine. In

addition, with the small size of the Ill,200 N (25,000 Ib) thrust size engine,

the high pressure ratio cycle could lead to requirement for centrifugal stag-

ing in the rear compressor stages. In terms of aerodynamics, the compressor

concept is based on advanced controlled diffusion airfoils with three-

dimensionally designed endwalls and tighter operating clearances from an im-

proved active clearance control system. Also, operating at the high aerodynamic

loading reduces the number of airfoils by over 20 percent, which contributes to

a substantial savings in weight and maintenance cost.

The blades in the low-pressure compressor are fabricated from advanced alumi-

num alloys. In the front stages of the high-pressure compressor, the blades
are fabricated from titanium alloys and bonded to a titanium drum rotor. In

the rear stages, advanced nickel alloy blades are bonded to a nickel alloy
rotor. With all of these technology features, the projected polytropic effi-

ciency is over 93 percent.



Low Loss Diffuser/Combustor with Improved Materials -- The combustor is a com-

pact, single-stage design with a low pressure loss and low pattern factor. The

diffuser is a high performance channel design that supplies combustion and

turbine cooling air at a low pressure loss. Advanced materials are fundamental

to the design of both the diffuser and the combustor liner to permit operation

at the higher temperatures associated with the higher overall pressure ratio.
The segmented liners are fabricated from a nonmetallic material, such as a

ceramic composite, for a temperature capability of 1205°C (2200°F). A non-

metallic is also used for the diffuser, while the diffuser case is made from a

high temperature alloy with good castability and weldability properties.

High Speed Turbine with Improved Materials -- Both the high and low-pressure

turbines operate at high speed. In comparison to the reference engine, the
high-pressure turbine operates at a 25 percent higher AN 2 level (annulus

area times speed squared -- a parameter that relates both performance and

blade stress parameters) and the low-pressure turbine at approximately 300

percent higher. Airfoils are a three-dimensional design, and leakage losses
are controlled by advanced sealing techniques.

The technology in the two-stage high-pressure turbine enables up to lO percent
less cooling air. Advanced disk materials provide a 25 percent improvement in

strength, and a single crystal superalloy, in combination with an advanced

thermal barrier coating, allows the blades and vanes to operate at up to 222
°C (400°F) higher temperature. A ceramic material is a possibility for the
vanes.

Closed-Loop Active Clearance Control -- Clearances as tight as 0.025 cm (O.OlO

in) are maintained in both the compressor and turbines by a dual active clear-

ance control system. With this concept, a primary system uses a sensing device
to provide continual feedback to the engine control so minimum clearances are

maintained during steady state operation. This sensor could utilize advanced

laser optics or microwave beam technology. The secondary system features a

seal translation device for responsive actuation during transient as well as
less rapid speed variations.

Fully Damped, High Speed Rotors -- The engine is designed for significantly

higher rim speeds and lower hub-to-tip ratios. Meeting the challenges of high
speed operation is largely dependent on the anticipated advances in the

strength and temperature capability of rotor materials, and the application of

high energy absorption dampers. Main shaft bearings are designed to withstand

higher centrifugal loading and achieve a life factor 40 percent higher than
current bearings.

Structural Composites -- Advanced composites and composite-reinforced alloys

are used extensively because of their low weight and high strength properties.
In the nacelle, composites are used for the inlet, fan cowl, fan nozzle, fan

discharge, and fan reverser. Composite-reinforced alloys are also used for the

fan disk and the reduction gear housing. In the high-pressure rotor, local

reinforcement with polymeric composites provides a 35 percent weight savings.

10



Short, Slim Nacelle -- The nacelle has several prominent features to enhance

both aerodynamic performance and structural rigidity. A slim line design is

critical for integrating higher bypass ratio engines in the airplane as well

as reducing the potential high drag and weight penalties inherent in a large
structure. The outer fan cowl is a short, thin, shock-free structure, and it

is an integral part of the engine structure to reduce deflections and weight.

The inner cowl provides structural support as well as stiffness for the gas

generator core. Added stiffness is especially important to maintain tight

operating clearances with the more flexible smaller diameter core. To reduce
the thickness of the outer cowl, the entire reverser mechanism is contained

within the inner cowl. The design also includes advances in sound reduction

techniques. As mentioned earlier, the use of composites has a large part in

reducing component weight.

11



SECTION4 -- PERFORMANCE AND ECOHOMIC ASSESSMENT

In examining the benefits of far-term technologies, the figures of merit were

the change in fuel burned and direct operating cost plus interest relative to

the reference engine. Fuel burned is the total fuel used throughout the flight

cycle. Direct operating cost plus interest includes costs directly affected by
the engine, and for a more accurate representation of the overall economic

picture, it accounts for the cost of money.

Four engine concepts, covering mixed and separate flows as well as direct and

gear-driven fan, were evaluated parametrically in three advanced airplanes.

Alsn, three levels of fuel prices $0.?6, $0.40 and $0.66 per liter, ($1.00,
$I.50 and $2.50 per gallon) were used in the analysis. As shown in Figure 6,

the nonmixed, geared-turbofan offers superior savings in both fuel consumption

and operating economics in comparison to the other concepts. Fuel savings of

up to 24 percent and reductions in direct operating cost plus interest of up
to 14 percent are possible.

Direct

Operating
Cost + I

savings,
%

Fuel burn

savings,
%

14

12

10

8

6

4

2

0

-- Geared

500 passenger quadjet at 2000 nm
drive fuel cost at $1.50/gallon

Separate flow
Mixed flow

24!
20 Geared

16

12 _" drive

8 , z i i J i L 188 10 12 114 i 116 i

Bypass ratio

Figure 6 Technology Benefit Summary -- A geared-fan configuration with a

separate exhaust offers the highest savings in fuel and operating
costs.
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OF POOR QUALITY

SECTION 5 -- TECHNOLOGY PROGRAMS

A technology plan has been formulated to bring these nine key technologies to
a state of readiness. The plan identifies the different areas of each tech-

nology requiring research and development programs. Each program has been de-

fined in terms of the program objective, scope of work, cost, and scheduling.

Figure 7 shows the comprehensive technology plan for achieving technology
readiness.
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Figure 7 Technology Schedule -- This multi-year schedule shows the major

technology programs, key milestones and estimated timing.
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SECTION6 -- CONCLUDINGREMARKS

The benefits derived from technology advancements for future turbofan engines

are significant and far from exhausted. The potential savings -- up to 24

percent in fuel burned and up to 14 percent in direct operating costs relative

to a refined version of the Energy Efficient Engine -- translate into billions

of dollars in annual savings for the airlines.

The development of a technology base that permits engines to operate at sub-

stantially higher overall pressure ratio and bypass ratios is mandatory to

obtain these benefits. The technologies identified in this study are essentlal

toward the achievement of this objective, and they require appreciable ad-

vances in the areas of aerodynamics, structures, cooling techniques, and
materials.

The results of this study have pointed the direction for future research. The

next major step is initiating the required programs that will turn the high
technology into large payoffs.
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FOREWORD

The Energy Efficient Engine ComponentDevelopment and Integration program is

being conducted under parallel National Aeronautics and Space Administration

contracts with Pratt & Whitney and General Electric Company. The overall pro-

ject is under the direction of Mr. Carl C. Ciepluch. The Pratt & Whitney effort

is under contract NAS3-20646, and _Ir. Frank Berkopec is the NASA project engi-

neer responsible for the portion of the project described in this report. Mr.

William B. Gardner is manager of the Energy Efficient Engine program at Pratt

& Whitney. This report was prepared by Mr. D. E. Gray and Mr. W. B. Gardner of
Pratt & Whitney.
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